Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171594, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461989

RESUMEN

BACKGROUND: Recently, the effect of artificial light at night (ALAN) on the physiology and behavior of insects has gradually attracted the attention of researchers and has become a new research topic. Aedes albopictus is an important vector that poses a great public health risk. Further studies on the diapause of Ae. albopictus can provide a basis for new vector control, and it is also worth exploring whether the effect of ALAN on the diapause of Ae. albopictus will provide a reference for the prevention and control of infectious diseases mediated by Ae. albopictus. METHODS: In this study, we experimentally studied the diapause characteristics of different geographical strains of Ae. albopictus under the interference of ALAN, explored the effect of ALAN on the diapause of Ae. albopictus and explored the molecular mechanism of ALAN on the diapause process through RNA-seq. RESULTS: As seen from the diapause incidence, Ae. albopictus of the same geographic strain showed a lower diapause incidence when exposed to ALAN. The differentially expressed genes (DEGs) were mainly enriched in signaling and metabolism-related pathways in the parental females and diapause eggs of the ALAN group. CONCLUSIONS: ALAN inhibits Ae. albopictus diapause. In the short photoperiod induced diapause of Ae. albopictus in temperate strain Beijing and subtropical strain Guangzhou, the disturbance of ALAN reduced the egg diapause rate and increased the egg hatching rate of Ae. albopictus, and the disturbance of ALAN also shortened the life cycle of Ae. albopictus eggs after hatching.


Asunto(s)
Aedes , Diapausa , Animales , Femenino , Contaminación Lumínica , Aedes/fisiología , Fotoperiodo
2.
Acta Trop ; 248: 107001, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37634685

RESUMEN

Aedes albopictus (Skuse) (Diptera: Culicidae) is one of the 100 most invasive species in the world and represents a significant threat to public health. The distribution of Ae. albopictus has been expanding rapidly due to increased international trade, population movement, global warming and accelerated urbanization. Consequently, it is very important to know the potential distribution area of Ae. albopictus in advance for early warning and control of its spread and invasion. We randomly selected 282 distribution sites from 27 provincial-level administrative regions in China, and used the GARP and MaxEnt models to analyze and predict the current and future distribution areas of Ae. albopictus in China. The results showed that the current range of Ae. albopictus in China covers most provinces such as Yunnan and Guizhou Provinces, and the distribution of Ae. albopictus in border provinces such as Tibet, Gansu and Jilin Provinces tend to expand westwards. In addition, the potential distribution area of Ae. albopictus in China will continue to expand westwards due to future climate change under the SSP126 climate scenario. Furthermore, the results of environmental factor filtering showed that temperature and precipitation had a large effect on the distribution probability of Ae. albopictus.


Asunto(s)
Aedes , Animales , Comercio , China , Internacionalidad , Factores Socioeconómicos , Mosquitos Vectores
3.
Genes (Basel) ; 13(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36360187

RESUMEN

Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. The genetic variation and population structure of Ae. albopictus populations collected from 22 cities along the Yangtze River Basin were investigated with nine microsatellite loci and the mitochondrial CoxI gene. The polymorphic information content (PIC) values ranged from 0.534 to 0.871. The observed number of alleles (Na) values ranged from 5.455 to 11.455, and the effective number of alleles (Ne) values ranged from 3.106 to 4.041. The Shannon Index (I) ranged from 1.209 to 1.639. The observed heterozygosity (Ho) values ranged from 0.487 to 0.545. The FIS value ranged from 0.047 to 0.212. All Ae. albopictus populations were adequately allocated to three clades with significant genetic differences. Haplotype 2 is the most primitive molecular type and forms 26 other haplotypes after one or more site mutations. The rapid expansion of high-speed rail, aircraft routes and highways along the Yangtze River Basin have accelerated the dispersal and communication of mosquitoes, which appears to have contributed to inhibited population differentiation and promoted genetic diversity among Ae. albopictus populations.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Aedes/genética , Mosquitos Vectores/genética , Ríos , Variación Genética/genética , Repeticiones de Microsatélite/genética , China , Genética de Población , Virus Zika/genética , Infección por el Virus Zika/genética
4.
Front Genet ; 13: 827655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110209

RESUMEN

Background: Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Wolbachia is a gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Compared with research on the dispersion of Ae. albopictus at the macrospatial level (mainly at the country or continent level), little is known about its variation and Wolbachia infection at the microspatial level, which is essential for its management. Meanwhile, no local cases of dengue fever have been recorded in the history of Nanjing, which implies that few adulticides have been applied in the city. Thus, the present study examines how the Ae. albopictus population varies and the Wolbachia infection status of each population among microspatial regions of Nanjing City. Methods: The genetic structure of 17 Aedes albopictus populations collected from urban, urban fringe, and rural regions of Nanjing City was investigated based on 9 microsatellite loci and the mitochondrial coxI gene. The Wolbachia infection status of each population was also assessed with Wolbachia A- and Wolbachia B-specific primers. Results: Nine out of 58 tested pairs of microsatellite markers were highly polymorphic, with a mean PIC value of 0.560, and these markers were therefore chosen for microsatellite genotyping analysis. The Na value of each Ae. albopictus population was very high, and the urban area populations (7.353 ± 4.975) showed a lower mean value than the urban fringe region populations (7.866 ± 5.010). A total of 19 coxI haplotypes were observed among 329 Ae. albopictus individuals via haplotype genotyping, with the highest diversity observed among the urban fringe Ae. albopictus populations (Hd = 0.456) and the lowest among the urban populations (Hd = 0.277). Each Ae. albopictus population showed significant departure from HWE, and significant population expansion was observed in only three populations from the urban (ZSL), urban fringe (HAJY), and rural areas (HSZY) (p < 0.05). Combined with DAPC analysis, all the Ae. albopictus populations were adequately allocated to two clades with significant genetic differences according to population structure analysis, and the best K value was equal to two. AMOVA results showed that most (96.18%) of the genetic variation detected in Ae. albopictus occurred within individuals (FIT = 0.22238, p < 0.0001), while no significant positive correlation was observed via isolation by distance (IBD) analysis (R 2 = 0.03262, p = 0.584). The TCS network of all haplotypes showed that haplotype 1 (H1) and haplotype 4 (H4) were the most frequent haplotypes among all populations, and the haplotype frequency significantly increased from urban regions (36.84%) to rural regions (68.42%). Frequent migration was observed among Ae. albopictus populations from rural to urban regions via the urban fringe region, with four direct migration routes between rural and urban regions. Furthermore, Wolbachia genotyping results showed that most of the individuals of each population were coinfected with Wolbachia A and Wolbachia B. The independent infection rate of Wolbachia A was slightly higher than that of Wolbachia B, and no significant differences were observed among different regions. Conclusion: In the microspatial environment of Nanjing City, the urban fringe region is an important region for the dispersion of Ae. albopictus populations between rural and urban areas, and Wolbachia A and Wolbachia B coinfection is the most common Wolbachia infection status in all Ae. albopictus populations among different regions.

5.
Acta Trop ; 236: 106698, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162456

RESUMEN

Dengue virus type Ⅱ (DENV2) is a primary serotype responsible for the dengue fever epidemic, and Aedes aegypti is the main DENV2 vector. Understanding the Aedes aegypti immune mechanism against DENV2 is the basis for research on immune blockade in mosquitoes. Some preliminary studies lack validation in the literature, so this study was performed to further study and validate the potential target genes to provide a further basis for screening key target genes. We screened 51 genes possibly related to Aedes aegypti infection and immunity from the literature for further verification. First, bioinformatic methods such as GO, KEGG and PPI analysis were used, and then RT-qPCR was used to detect the changes in mRNA expression in the midguts and salivary glands of Aedes aegypti infected with DENV2.Bioinformatic analysis showed that mostly genes of the glucose metabolism pathway and myoprotein were influenced. In salivary glands, the Gst (xa) and Toll (xb) expression levels were significantly correlated with DENV2 load (y, lg[DENV2 RNA copies]), y = -3436xa+0.2287xb+3.8194 (adjusted R2 = 0.5563, F = 9.148, PF = 0.0045). In midguts, DENV2 load was significantly correlated with the relative Fba(R2 = 0.4381, t = 2.497, p < 0.05, df = 8), UcCr(R2 = 0.4072, t = 2.344, p < 0.05, df = 8) and Gbps1(R2 = 0.4678, t = 2.652, p < 0.05, df = 8) expression levels, but multiple regression did not yield significant results. This study shows that genes related to glucose metabolism and muscle proteins contribute to the interaction between Aedes aegypti and dengue virus. It was confirmed that SAAG-4, histone H4, endoplasmin, catalase and other genes are involved in the regulation of DENV2 infection in Aedes aegypti. It was revealed that GST and Toll in salivary glands may have antagonistic effects on the regulation of DENV2 load. Fba, UcCr and Gbps1 in the midgut may increase DENV2 load. These study results further condensed the potential target gene range of the Aedes aegypti immune mechanism against DENV2 infection and provided basic information for research on the Aedes aegypti in vivo blockade strategy against DENV2.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Aedes/genética , Animales , Catalasa , Virus del Dengue/genética , Glucosa , Histonas , Mosquitos Vectores , Proteínas Musculares , ARN , ARN Mensajero , Replicación Viral
6.
Front Microbiol ; 13: 888751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722287

RESUMEN

West Nile virus (WNV) is an arbovirus, which causes widespread zoonotic disease globally. In China, it was first isolated in Jiashi County, Kashgar Region, Xinjiang in 2011. Determining the vector competence of WNV infection has important implications for the control of disease outbreaks. Four geographical strains of Aedes Albopictus (Ae. Albopictus) in China were allowed to feed on artificial infectious blood meal with WNV to determine the infection and transmission rate. The results indicated that four strains of Ae. Albopictus mosquitoes could infect and transmit WNV to 1- to 3-day-old Leghorn chickens. The infection rates of different strains were ranged from 16.7 to 60.0% and were statistically different (χ2 = 12.81, p < 0.05). The highest infection rate was obtained from the Shanghai strain (60.0%). The transmission rates of Ae. Albopictus Shanghai, Guangzhou, Beijing, and Chengdu strains were 28.6, 15.2, 13.3, and 6.7%, respectively. Furtherly, the results reveal that Ae. Albopictus Beijing strain infected orally can transmit WNV transovarially even the eggs are induced diapausing. The study confirmed that WNV could survive in the diapause eggs of Ae. Albopictus and could be transmitted to progeny after diapause termination. This is of great significance for clarifying that the WNV maintains its natural circulation in harsh environments through inter-epidemic seasons.

7.
Parasit Vectors ; 14(1): 12, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407824

RESUMEN

BACKGROUND: Aedes albopictus is an indigenous primary vector for dengue and Zika viruses in China. Compared with its insecticide resistance, biology and vector competence, little is known about its genetic variation, which corresponds to environmental variations. Thus, the present study examines how Ae. albopictus varies among different climatic regions in China and deciphers its potential dispersal patterns. METHODS: The genetic variation and population structure of 17 Ae. albopictus populations collected from three climatic regions of China were investigated with 11 microsatellite loci and the mitochondrial coxI gene. RESULTS: Of 44 isolated microsatellite markers, 11 pairs were chosen for genotyping analysis and had an average PIC value of 0.713, representing high polymorphism. The number of alleles was high in each population, with the ne value increasing from the temperate region (3.876) to the tropical region (4.144). Twenty-five coxI haplotypes were detected, and the highest diversity was observed in the tropical region. The mean Ho value (ca. 0.557) of all the regions was significantly lower than the mean He value (ca. 0.684), with nearly all populations significantly departing from HWE and displaying significant population expansion (p value < 0.05). Two genetically isolated groups and three haplotype clades were evaluated via STRUCTURE and haplotype phylogenetic analyses, and the tropical populations were significantly isolated from those in the other regions. Most genetic variation in Ae. albopictus was detected within populations and individuals at 31.40 and 63.04%, respectively, via the AMOVA test, and a relatively significant positive correlation was observed among only the temperate populations via IBD analysis (R2 = 0.6614, p = 0.048). Recent dispersions were observed among different Ae. albopictus populations, and four major migration trends with high gene flow (Nm > 0.4) were reconstructed between the tropical region and the other two regions. Environmental factors, especially temperature and rainfall, may be the leading causes of genetic diversity in different climatic regions. CONCLUSIONS: Continuous dispersion contributes to the genetic communication of Ae. albopictus populations across different climatic regions, and environmental factors, especially temperature and rainfall, may be the leading causes of genetic variation.


Asunto(s)
Aedes/genética , Distribución Animal , Genética de Población , Aedes/virología , Animales , China/epidemiología , Clima , Dengue/transmisión , Complejo IV de Transporte de Electrones/genética , Genes de Insecto , Variación Genética , Repeticiones de Microsatélite/genética , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Filogenia , Polimorfismo Genético , Infección por el Virus Zika/transmisión
8.
PLoS Negl Trop Dis ; 14(7): e0008450, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628662

RESUMEN

BACKGROUND: Zika virus (ZIKV) disease outbreaks have been occurring in South America since 2015, and has spread to North America. Because birth defects and cases of Guillain Barré have been associated with infection with ZIKV, this has drawn global attention. ZIKV is generally considered an Aedes-transmitted pathogen. The transmission of ZIKV through blood by Aedes mosquito bites has been recognized as the major transmission route. However, it is not clear whether there are other transmission routes that can cause viral infection in mosquitos. The aim of the present study is to describe the susceptibility of Armigeres subalbatus, which often develop in human waste lagoons, to ZIKV, through oral infection in adult mosquitoes and urine infection in larvae. METHODOLOGY/PRINCIPAL FINDINGS: Five-day-old female Ar. subalbatus ingested infectious blood meals containing ZIKV. After 4, 7, and 10 days of ingesting infectious blood meals, ZIKV could be detected in the midguts, salivary glands, ovaries, and collected saliva of mosquitoes. The ZIKV infection rate (IR) on day 10 reached 40% in salivary glands and 13% in saliva, indicating that these mosquitoes were able to transmit ZIKV. In addition, ZIKV infection was also discovered in mosquito ovaries, suggesting the possibility of vertical transmission of virus. Moreover, Ar. subalbatus transmitted ZIKV to infant mice bitten by infectious mosquitoes. In a second experiment, 1st-instar larvae of Ar. subalbatus were reared in water containing ZIKV and human urine. After pupation, pupae were placed in clean water and transferred to a mosquito cage for emergence. Although ZIKV RNA was detected in all of the larvae tested, ZIKV was not detected in the saliva of any adult Ar. subalbatus. Considering that there are more uncontrollable factors in nature than in the laboratory environment, the possibility that the virus is transmitted to adult mosquitoes via larvae is very small period. CONCLUSIONS/SIGNIFICANCE: Adult Ar. subalbatus could be infected with ZIKV and transmit ZIKV through mosquito bites. Therefore, in many rural areas in China and in undeveloped areas of other Asian countries, the management of human waste lagoons in the prevention and control of Zika disease should be considered. Corresponding adjustments and modifications should also be made in prevention and control strategies against ZIKV.


Asunto(s)
Culicidae/virología , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Animales , Culicidae/crecimiento & desarrollo , Culicidae/fisiología , Femenino , Humanos , Larva/virología , Ratones , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/fisiología , Saliva/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/orina , Infección por el Virus Zika/virología
9.
Acta Trop ; 204: 105343, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31954135

RESUMEN

The odorant receptors (ORs) play a critical role for mosquitoes in the identification of blood-feeding hosts and other physiological processes. The OR8 subfamily in mosquitoes has been shown to be strongly involved in the detection the mammalian host associated odor, 1-octen-3-ol. CquiOR114/117 has been shown to be an orthologous OR8 in Culex quinquefasciatus Say. In this study, the expression of CquiOR114/117 in the different developmental stages of Cx. quinquefasciatus was detected by the amplification of CquiOR114/117 with real-time fluorescence quantitative polymerase chain reaction (PCR). RNA interference (RNAi) technology was used to interfere with the expression of CquiOR114/117 in females to observe the blood-feeding behavior change. The results showed that the expression level of CquiOR114/117 in the egg-to-pupa stage was significantly lower than that in the adult stage and that the expression level of the female mosquitoes peaked on the third day after emergence. The expression of CquiOR114/117 was significantly decreased in the 2-6 days after the injection of dsRNA compared with the control groups. The analysis of the blood-feeding behavior showed a significant positive correlation between CquiOR114/117 expression and the engorgement rate of the mosquitoes. CquiOR114/117 is speculated to have an effect on the blood-feeding behavior of Cx. quinquefasciatus.


Asunto(s)
Culex/fisiología , Conducta Alimentaria , Receptores Odorantes/fisiología , Animales , Femenino , Masculino , Interferencia de ARN , Receptores Odorantes/genética
10.
Malar J ; 18(1): 183, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138226

RESUMEN

Please be advised that since publication of the original article [1] the authors have flagged that they omitted to provide the up-to-date version of Fig. 1 and, as such, the wrong version of Fig. 1 is present in the article.

11.
Malar J ; 18(1): 164, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064367

RESUMEN

BACKGROUND: Anopheles sinensis is one of the major malaria vectors in China and other southeast Asian countries, including Vietnam, Cambodia, Thailand. Vector control is considered to be the critical measure for malaria control, while the increasing prevalence of insecticide resistance caused by long-term use of insecticides, especially pyrethroids, is threatening the successful control of An. sinensis. In order to understand the underlying resistance mechanisms involved and molecular basis, the principal malaria vector, An. sinensis from Jiangsu and Anhui provinces, Southeast China, was investigated. METHODS: The adult Anopheles mosquitoes were sampled from multiple sites across Jiangsu and Anhui provinces, and sufficient mosquitoes collected from eleven sites for insecticide susceptibility bioassays. The DIIS4-DIIS6 region of the para-type sodium channel gene was amplified and sequenced, then multiple PCR and Taqman assays were used to assess the frequencies of kdr mutations at the target gene. RESULTS: In the present study, most of the adult An. sinensis populations were pyrethroids resistant, which indicated the presence of kdr resistance mutations in the para-type sodium channel gene. Sequence analyses demonstrated the kdr mutation existed at codon 1014 in Jiangsu and Anhui provinces. In adult An. sinensis, three mutant types (TTT L1014F, TTC L1014F, and TGT L1014C) of kdr alleles were detected, while no wild type (TTG L1014) was observed. The TTC L1014F mutation was first reported in Anhui province. CONCLUSIONS: The highly polymorphic kdr alleles were observed in all the adult An. sinensis populations, which suggested that in-depth studies are required for carrying on insecticide resistance monitoring and specific resistance mechanisms studying into establish effective long-term malaria vector control program in eastern China.


Asunto(s)
Distribución Animal , Anopheles/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas , Polimorfismo Genético , Alelos , Animales , China , Técnicas de Silenciamiento del Gen , Genotipo , Geografía , Mosquitos Vectores/genética , Mutación , Reacción en Cadena de la Polimerasa , Piretrinas , Análisis de Secuencia de ADN
12.
Parasit Vectors ; 10(1): 292, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28610594

RESUMEN

BACKGROUND: There was no record of Aedes aegypti in Yunnan Province, China, until 2002, but this species is now continuously found in nine cities (or counties). Until now, little was known about the genetic diversity and population structure of this invasive species. Thus, a detailed understanding of the invasion strategies, colonisation and dispersal of this mosquito from a population genetics perspective is urgently needed for controlling and eliminating this disease vector. METHODS: The genetic diversity and population structure of Ae. aegypti communities were analysed by screening nine microsatellite loci from 833 Ae. aegypti mosquitoes sampled from 28 locations in Yunnan Province. RESULTS: In total, 114 alleles were obtained, and the average polymorphic information content (PIC) value was 0.672. The value of the alleles per locus ranged from 2.90 to 5.18, with an average of 4.04. The value of He ranged from 0.353 to 0.681, and the value of Ho within populations ranged from 0.401 to 0.689. Of the 28 locations, two showed significant departures from the Hardy-Weinberg equilibrium (HWE) with P-values less than 0.05, and a bottleneck effect was detected among locations from Ruili and the border areas with the degree of 60% and 50%, respectively. Combined with the F-statistics (FIT = 0.222; FCT = 0.145), the analysis of molecular variance (AMOVA) revealed that there was substantial molecular variation among individuals, accounting for 77.76% of the sample, with a significant P-value (<0.0001). The results suggest that genetic differences in Ae. aegypti originated primarily among individuals rather than among populations. Furthermore, the STRUCTURE and UPGMA cluster analyses showed that Ae. aegypti from the border areas were genetically isolated compared to those from the cities Ruili and Jinghong, consistent with the results of the Mantel test (R 2 = 0.245, P < 0.0001). CONCLUSIONS: Continuous invasion contributes to the maintenance of Ae. aegypti populations' genetic diversity and different invasion accidents result in the genetic difference among Ae. aegypti populations of Yunnan Province.


Asunto(s)
Aedes/genética , Variación Genética , Animales , China , Genética de Población , Insectos Vectores/genética , Repeticiones de Microsatélite/genética
13.
Emerg Microbes Infect ; 6(4): e23, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28442754

RESUMEN

Zika virus (ZIKV) has become a serious threat to global health since the outbreak in Brazil in 2015. Additional Chinese cases have continuously been reported since the first case of laboratory-confirmed ZIKV infection in China on 6 February 2016. Aedes aegypti is the most important vector for ZIKV. This study shows that two strains from China exhibit high levels of midgut infection and highly disseminated infection of salivary glands and ovaries. Both strains can transmit ZIKV to infant mice bitten by infectious mosquitoes. Moreover, the results provide the evidence of transovarial transmission of ZIKV in mosquitoes. The study indicates that the two Ae. aegypti strains are not only effective transmission vectors but also persistent survival hosts for ZIKV during unfavorable inter-epidemic periods. This function as a reservoir of infection has epidemiological implications that further enhance the risk of potential future outbreaks.


Asunto(s)
Aedes/virología , Insectos Vectores/virología , Ovario/virología , Glándulas Salivales/virología , Infección por el Virus Zika/transmisión , Virus Zika/patogenicidad , Aedes/clasificación , Animales , Brotes de Enfermedades , Reservorios de Enfermedades/virología , Femenino , Humanos , Ratones
14.
J Am Mosq Control Assoc ; 33(4): 324-330, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29369035

RESUMEN

Culex quinquefasciatus is one of China's major house-dwelling mosquito species and an important vector of filariasis and encephalitis. Chemical treatments represent one of the most successful approaches for comprehensive mosquito prevention and control. However, the widespread use of chemical pesticides has led to the occurrence and development of insecticide resistance. Therefore, in-depth studies of resistance to insecticides are of vital importance. In this study, we performed a gene expression analysis to investigate genes from Cx. quinquefasciatus that may confer pyrethroid resistance. We aimed to understand the mechanisms of Cx. quinquefasciatus resistance to pyrethroid insecticides and provide insights into insect resistance management. Using a resistance bioassay, we determined the deltamethrin LC50 values (lethal concentration required to kill 50% of the population) for Cx. quinquefasciatus larvae in the F21, F23, F24, F26, F27, and F30 generations. The 7 tested strains exhibited pesticide resistance that was 25.25 to 87.83 times higher than that of the SanYa strain. Moreover, the expression of the OBPjj7a (odorant-binding protein OBPjj7a), OBP28 (odorant-binding protein OBP28), and E2 (ubiquitin-conjugating enzyme) genes was positively correlated with deltamethrin resistance ( R2 = 0.836, P = 0.011; R2 = 0.788, P = 0.018; and R2 = 0.850, P = 0.009, respectively) in Cx. quinquefasciatus. The expression of 4 additional genes, H/ACA, S19, SAR2, and PGRP, was not correlated with deltamethrin resistance. In summary, this study identified 3 Cx. quinquefasciatus genes with potential involvement in deltamethrin resistance, and these results may provide a theoretical basis for the control of mosquito resistance and insights into resistance detection.


Asunto(s)
Culex/genética , Expresión Génica/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Animales , China , Culex/efectos de los fármacos , Culex/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo
15.
Emerg Microbes Infect ; 5(9): e102, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27599470

RESUMEN

Zika virus (ZIKV) has become a threat to global health since the outbreak in Brazil in 2015. Although ZIKV is generally considered an Aedes-transmitted pathogen, new evidence has shown that parts of the virus closely resemble Culex-transmitted viruses. Therefore, it is important to evaluate the competence of Culex species for ZIKV to understand their potential as vectors. In this study, female Culex pipiens quinquefasciatus were orally exposed to ZIKV. Mosquito midguts, salivary glands and ovaries were tested for ZIKV to measure infection and dissemination at 2, 4, 6, 8, 12, 16 and 18 days post exposure (pe). In addition, saliva was collected from mosquitoes after infection and infant mice were bitten by infected mosquitoes to measure the transmission ability of Cx. p. quinquefasciatus. The results showed that the peak time of virus appearance in the salivary glands was day 8 pe, with 90% infection rate and an estimated virus titer of 3.92±0.49 lg RNA copies/mL. Eight of the nine infant mice had positive brains after being bitten by infected mosquitoes, which meant that Cx. p. quinquefasciatus could be infected with and transmit ZIKV following oral infection. These laboratory results clearly demonstrate the potential role of Cx. p. quinquefasciatus as a vector of ZIKV in China. Because there are quite different vector management strategies required to control Aedes (Stegomyia) species and Cx. p. quinquefasciatus, an integrated approach may be required should a Zika epidemic occur.


Asunto(s)
Culex/virología , Transmisión de Enfermedad Infecciosa , Insectos Vectores/virología , Infección por el Virus Zika/transmisión , Virus Zika/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/virología , Ratones , Ovario/virología , Glándulas Salivales/virología
16.
Acta Trop ; 161: 86-90, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27260668

RESUMEN

Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China.


Asunto(s)
Aedes/virología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/genética , Dengue/transmisión , Insectos Vectores/genética , Insectos Vectores/virología , Animales , China , Virus del Dengue/aislamiento & purificación , Variación Genética , Humanos , Ratas
17.
J Am Mosq Control Assoc ; 32(2): 144-51, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27280353

RESUMEN

Widespread resistance of insect pests to insecticides has been widely reported in China and there is consequently an urgent need to adjust pest management strategies appropriately. This requires detailed information on the extent and causes of resistance. The aim of the present study was to investigate levels of resistance to 5 insecticides among 12 strains of Culex tritaeniorhynchus, a major vector of Japanese encephalitis in China. Resistance to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur were measured using larval bioassays. The allelic frequency of knockdown resistance (kdr) and acetylcholinesterase (AChE) mutations were determined in all strains. Larval bioassay results indicated that the field strains collected from different sites were resistant to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur, with resistance ratio values ranging from 1.70- to 71.98-fold, 7.83- to 43.07-fold, 3.54- to 40.03-fold, 291.85- to 530.89-fold, and 51.32- to 108.83-fold, respectively. A polymerase chain reaction amplification of specific alleles method for individual was developed to detect genotypes of the AChE gene mutation F455W in Cx. tritaeniorhynchus. The frequency of the AChE gene mutation F455W was 100.00% in all strains, making this mutation of no value as a marker of resistance to organophosphorous and carbamate pesticides in Cx. tritaeniorhynchus in China. The kdr allele was present in all strains at frequencies of 10.00-29.55%. Regression analysis indicated a significant correlation between kdr allele frequencies and levels of resistance to deltamethrin, beta-cypermethrin, and permethrin. These results highlight the need to monitor and map insecticide resistance in Cx. tritaeniorhynchus and to adjust pesticide use to minimize the development of resistance in these mosquitoes.


Asunto(s)
Acetilcolinesterasa/genética , Culex/genética , Proteínas de Insectos/genética , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Acetilcolinesterasa/metabolismo , Animales , Secuencia de Bases , China , Culex/metabolismo , Encefalitis Japonesa/parasitología , Encefalitis Japonesa/transmisión , Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Datos de Secuencia Molecular , Mutación
18.
J Am Mosq Control Assoc ; 32(1): 59-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27105218

RESUMEN

Aedes albopictus is the primary vector of dengue fever and dengue hemorrhagic fever in China. Although there are previous studies on the application of adulticides to control this species, the application methods have either been back-pack or vehicle-mounted systems. However, many sites are too large to be effectively treated with back-pack sprayers, and the lack of roads restricts the use of vehicle-mounted sprayers. This paper provides the first study of using unmanned aerial vehicles to conduct cold mist sprays on Ae. albopictus habitats. A spray containing 4% permethrin and 1% tetramethylfluthrin was applied at an effective application rate of 9.0 mg/m(2). This method reduced Ae. albopictus populations by more than 90%. The results indicate this novel spray system is a powerful method to achieve a rapid decline of mosquito population in Ae. albopictus habitats in China.


Asunto(s)
Aedes/efectos de los fármacos , Aeronaves , Ciclopropanos/farmacología , Insecticidas/farmacología , Permetrina/farmacología , Animales , China , Ciclopropanos/administración & dosificación , Insecticidas/administración & dosificación , Permetrina/administración & dosificación
19.
Acta Trop ; 157: 84-95, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26802491

RESUMEN

Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes.


Asunto(s)
Culex/efectos de los fármacos , Culex/genética , Diclorvos/toxicidad , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Propoxur/toxicidad , Piretrinas/toxicidad , Animales , China , Vectores de Enfermedades , Variación Genética , Larva/efectos de los fármacos
20.
J Am Mosq Control Assoc ; 31(4): 329-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26675454

RESUMEN

Mosquitoes in Habahe County of Xinjiang Uigur Autonomous Region in China are considered a serious nuisance problem to local residents, but little is known of their role in enzootic disease. Therefore, host-seeking behavior and virus detection in mosquitoes were investigated in this study. Adult host-seeking mosquitoes were sampled using the Centers for Disease Control and Prevention (CDC) light traps operated at three locations in June through August 2008. Nine traps were used at each location at 3 different heights (1 m, 3 m, and 5 m). Seven mosquito species from 4 genera were collected by CDC light traps in different habitats. In total, 90,055 mosquitoes were captured, of which Aedes vexans was the most abundant species, comprising 88.02% of all mosquitoes collected. The second most abundant species was Anopheles messese, which comprised about 5.86%. Other species caught were Culex modestus (2.89%), Aedes caspius (1.11%), Coquillettidia richiardii (0.61%), Ae. dorsalis (1.36%), and An. hyrcanus (0.14%). About 93.5% of Ae. vexans individuals were caught in CO2-baited CDC light traps at 1 m above the ground. The highest numbers of Cx. modestus were caught at the highest trap level, 5 m above ground. Overall, significantly more mosquitoes of all species were collected at dusk than at dawn. Based on blood-meal analyses, Ae. vexans and An. messese fed on various vertebrate hosts, whereas Cx. modestus fed on ducks only. From a total of 335 mosquito pools tested, 10 pools of Ae. vexans were found positive for alphavirus. Comparison with the gene database revealed that the alphavirus deoxyribonucleic acid fragment obtained (GenBank accession no. HM160530) was 100% homologous at the nucleotide level to chikungunya virus isolate LK (PB) chik3408, chikungunya virus isolate SGEHICHD122508, and chikungunya virus strain FD080231. The results of this study suggest that ongoing, integrated mosquito and arbovirus surveillance is necessary in this river wetland.


Asunto(s)
Arbovirus/aislamiento & purificación , Virus Chikungunya/aislamiento & purificación , Culicidae/fisiología , Culicidae/virología , Animales , Arbovirus/clasificación , Virus Chikungunya/genética , China , Culicidae/clasificación , Conducta Alimentaria , Femenino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...